

Geophysical Survey in Camp Sakhi Town, Nahr- e-Shahi District of Balkh Province

By:

M. Hassan Saffi, Senior Hydrogeologist Ahmad Jawid Hydrogeologist

Edited by:

Leendert Vijselaar WASH Adviser December, 2012

Paikob-e-Naswar, Wazirabad, PO Box 208, Kabul, Afghanistan

Phone: (+93) (020) 220 17 50Mobile (+93) (0)70 28 82 32 E-mail: dacaar@dacaar.orgWeb site: www.dacaar.org

Contents

LIST OF ABBREVIATION AND TECHNICAL TERMS	
TABLE OF TABLES	
TABLE OF FIGURES	
1. INTRODUCTION	4
2. SURFACE GEOLOGICAL SETTING OF AREA	5
3. HYDRO GEOLOGICAL SETTING OF THE STUDY AREA	5
4. VERTICAL ELECTRICAL SOUNDING SURVEY	6
4.1 VERTICAL ELECTRICAL SOUNDING METHOD.	
4.2 Field study	
4.3 Measured VES field data	
4.4 Interpreted field data	
4.5 VERTICAL ELECTRICAL SOUNDING FIELD DATA GRAPHIC INTERPRETATION	
4.6 VES PROFILES FIELD DATA GRAPHIC INTERPRETATION RESULTS	16
5. CONCLUSION	17
6. RECOMMENDATION	4-

List of Abbreviation and Technical Terms

Roh Apparent Resistivity (ohm.m)

Sp Self Potential (mV)
Vp Voltage Potential (mV)

In Current (m A)

VES Vertical Electrical Sounding

DACAAR Danish Committee for Aid to Afghan Refugee

WASH Water Sanitation and Hygiene WSG Water and Sanitation Group WHO World Heath Organisation

Table of Tables

Table 1 Location of water table and physical parameters of water points in Camp Sakhi & to	wn of Nahr-e
Shahi	6
Table 2 Location of VES Profiles	8
Table 3 VES 1 & 2 measured field data	9
Table 4 VES 3 & 4 measured field data	10
Table 5 VED 5 & 6 measured field data	10
Table 6 VES 7 & 8 measured field data	11
Table 7 Interpreted data	11
Table 8 VES#1, VES#2, VES#3, VES#4, VES#5, VES#6, VES#7, and VES#8 interpreted data	12
Table of Figures	
Figure 1 Recording VES profile field data using SYSCAL Pro resistivty meter	4
Figure 2 Surface Geological setting of the survey area (Balkh Province)	5
Figure 3 Groundwater level and salinity distribution	6
Figure 4 Vertical Electrical Sounding Method	7
Figure 5 Resistivity scale for water and rocks	7
Figure 6 Location and length of VES profiles in Camp Sakhi area	8
Figure 7 VES 1 Curve	13
Figure 8 VES 2 Curves	13
Figure 9 VES 3 Curves	14
Figure 10 VES 4 Curves	14
Figure 11 VES 5 Curves	15
Figure 12 VES 6 Curves	15
Figure 13 VES 7 Curves	16
Figure 14 VES 8 Curves	16

1.Introduction

DACAAR performed geophysical survey (vertical electrical sounding) for provision of safe drinking water for Camp SakhiTown. This Town is located about 18 Km to the northeast of Mazarisharifcenter of Balkh province. There is settled more than 2000 families and most of them are displaced and refugee. The people of this Town have safe drinking water problems because of saline groundwater. The hydro geologic condition of this Town is very complex for groundwater development due to having saline and fresh water bearing formation. The tube wells were drilled to the depth between 64 – 145m and constructed elevated reservoirs and pipe schemes, but the water being pumped and distributed is saline and they are potentially a threat to the health of the people. The people are using their drinking water from these tube wells, because there is no alternative water resources (fresh groundwater and surface water) for provision of safe drinking water.

On 18 - 20 November 2012, DACAAR were performed Vertical Electrical Sounding (VES) survey in Camp SakhiTown for provision of drinking water using Shlumbergerelectrodes arrangement (Figure 1). SYSCAL Pro resistivity meter measured the field data and the data interpreted by IPI2 win software.

Figure 1 Recording VES profile field data using SYSCAL Pro resistivty meter

2. Surface Geological setting of area

The surface geological formations of the survey area are:

- Recent Quaternary:gravel, sand, clay, clay sand and loess.
- Upper-recent Quaternary: gravel, sand, sand clay, silt and loess.
- Upper-recent Quaternary: sand, sand clay, silt and loess.
- Middle Quaternary: sand, clay sand, loess and loam
- Lower Quaternary:gravel, sand, clay sand, breccia, siltstone and gypsum
- Middle Miocen:Boron clay, siltstone, sandstone andconglomerate.

The Geological setting of the area is shown in the figure 2.

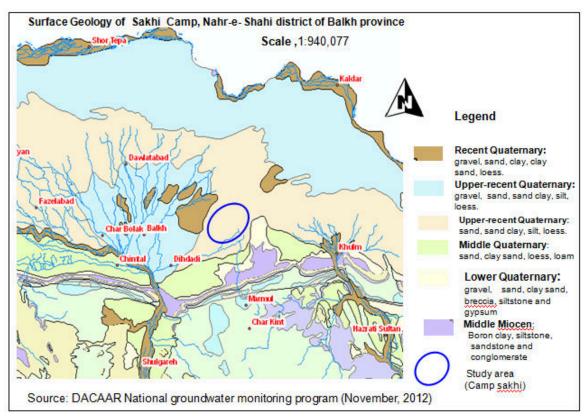


Figure 2 Surface Geological setting of the survey area (Balkh Province)

3. Hydro geological setting of the study area

The natural groundwater system in the survey area is characterized by Upper-recent Quaternary which is made of sand, sand clay, silt and loess. The water table ranges from 22 - 24 m and the aquifer (water bearing formation) has saline water. The groundwater salinity ranges from 2880 μ S/cm to 5370 μ S/cm. The study area is a problematic area from the groundwater point of view. Table 1 and figure 3 indicate water tables and salinity of groundwater in Camp Sakhi& in the town of Nahr-e-Shahi of Balkh Province.

Table 1 Location of water table and physical parameters of water points in Camp Sakhi&town of Nahr-e Shahi

No.	LAT.	LON.	Ele.	Source	TD (m)	WL(m)	EC (μS/cm)	рН	T
1	36.77345	67.32539	364	TW	88	22	3700	7.17	14.5
2	36.77450	67.32710	339	TW	77	22.4	4730	8.2	19.1
3	36.77383	67.32345	337	TW	110	22	4220	8.30	19.4
4	36.77826	67.32206	337	TW	64	23	3775	8.23	18.4
5	36.78382	67.32564	336	TW	100	22	3720	8.32	19.4
6	36.78919	67.31880	336	TW	64	22.5	3600	8.22	18.7
7	36.78188	67.31620	335	TW	135	22.5	2980	7.83	18.5
8	36.78024	67.31827	334	TW	135	24	2970	7.89	18
9	36.77472	67.31586	338	TW	95	22	2880	8.04	17.3
10	36.77619	67.31621	339	TW	90	23	5370	8.2	18
11	36.77839	67.30784	338	TW	110	22.5	2980	8.9	18
12	36.78145	67.30717	337	TW	123	23.2	2950	8.4	17
13	36.78693	67.30583	337	TW	105	105	3080	8.4	17.4

Note: Ele = Elevation

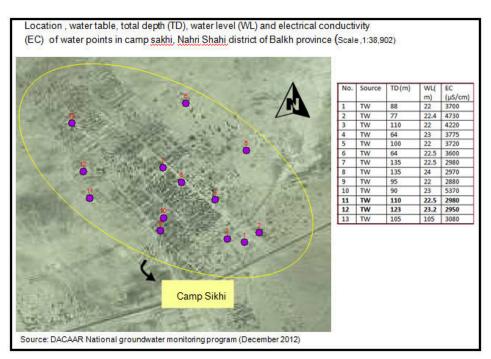
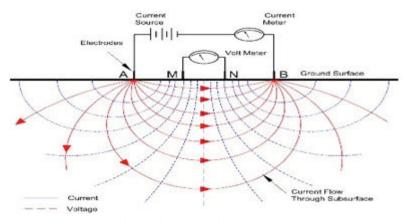



Figure 3 Groundwater level and salinity distribution

4. Vertical electrical sounding survey

4.1 Vertical Electrical sounding method

In this method the applied Schlumberger techniques was used. Current was transmitted into the ground from DC or low frequency sources by two electrodes (A and B) and the potential difference between a second pair of electrodes (M and N) was measured (figure 4).

Figure 4 Vertical Electrical Sounding Method

Apparent resistivity value is calculated:

Pa= K V / I

Where:

Pa is the apparent resistivity

K is the geometric factor,

V is a voltage or potential difference between a second pair of electrodes in volts

lis the current from DC or low frequency sources by two electrodes in ampere.

The field data interrelated according to the following resistivity scale for water and rocks (see figure 5).

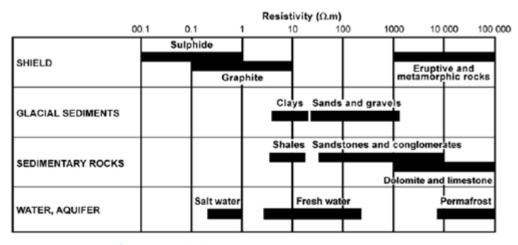


Figure 5 Resistivity scale for water and rocks

4.2 Field study

On18 -20 November 2012, 8 Vertical Electrical sounding (VES) profiles (VES-1, VES-2, VES-3, VES-4, VES-5, VES-6, VES-7 and VES-8) were performed in Camp SakhiTown,Nahr- e-ShahiDistrict of Balkh Province using Shlumbergerelectrodes arrangement. The lengths and locations of VES profiles are indicated in Table 2 and Figure 6.

Table 2 Location of VES Profiles

NO	Location Name	VES Profiles	LAT	LON	Elevation (m)	VES Length (m)
1	Camp Sakhi	VES-1	36.77377	67.32578	342	600
2	Camp Sakhi	VES-2	36.77608	67.32362	337	680
3	Camp Sakhi	VES-3	36.77610	67.31688	339	600
4	Camp Sakhi	VES-4	36.78168	67.31715	337	600
5	Camp Sakhi	VES-5	36.78196	67.31611	322	600
6	Camp Sakhi	VES-6	36.77929	67.31992	340	600
7	Camp Sakhi	VES-7	36.78240	67.32468	365	600
8	Camp Sakhi	VES-8	36.78173	67.31544	337	6

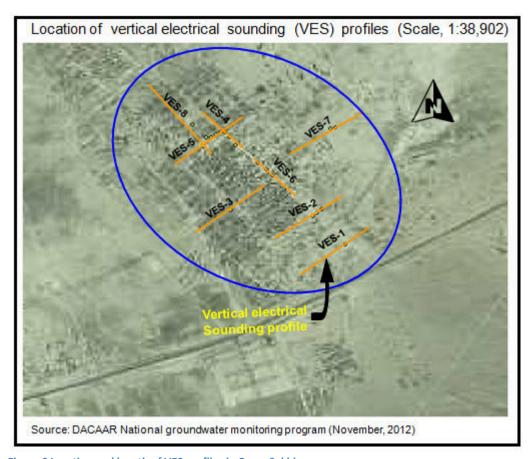


Figure 6 Location and length of VES profiles in Camp Sakhi area

4.3 Measured VES field data

SYSCAL Pro resistivity meter measured the field data and the measured data are shown in Table 3, Table 4, Table 5 and Table 6.

Table 3VES 1 & 2 measured field data

VES-1	, Cam	p Sakhi		To be the control			1000		np Sakhi				
Lat:36	.77377	7 Lo	n:36.32	578	Ele:342 r	C. C		6.7760	183	on:67.	32362	Ele:3	37 m
AB/2	MN/2	(ohm.m)	Sp (mV)	(mV)	In (mA)	(m)	AB/2	MN/2		Sp	Vp (m) (In (m.1)	K
1.5	0.5	321.52	18.1	1248.142	24.391	13.7		0.5	(ohm.m)	(mV)	A CONTRACTOR OF THE PARTY OF	(mA)	(m)
2	0.5	285.52	3.5	736.072	30.371	24.7	1.5	0.5	73.64	9.7		77.793	13.
3	0.5	184.88	4.7	176.052	26.177	56.2	3	0.5	51.89 56.99	4.7		103.91	24. 56.
4	0.5	101.77	7.6	13.02	6.331	100	4	0.5	74.66	3.9	Colored Colored Colored	136.77	
5	0.5	67.06	4.6	10.972	12.721	157	5	0.5	89.23	100			15
6	0.5	52.62	5.5	12.548	26.781	226	6	0.5	100.76	3.3	121.543		22
8	0.5	41.1	5.5	6,474	31.547	402	8	0.5	117.22	2.8	35.277	60.273	40
8	2	47.39	5.5	32,407	32.227	99	8	2		-10.9			9
10	2	40.58	19.3	21.829	40.562	156	10	2	123.31	-39	169.069	The state of the s	15
12	2	35.18	23.7	14.094	44.049	225	12	2		-52	80.141	73.314	22
15	2	30.52	25.7	2.478	14.093	352	15	2	117.34	-60.4	50.634	74.897	35
20	2	22.91	26.7	2.737	37.166	627	20	2	89.92	-68.3	31.154	107.758	62
20	5	25.26	12.3	7.935	37.015	247	20	5	87.32	31.7	79.324	107.017	24
25	5	21.6	3.2	5.321	46.443	389	25	5	71.01	32.3	31.555	83.758	38
30	5	20.34	2.8	3.38	45.687	562	30	5	57.16	31.5	15.419	74.152	56
40	5	17.25	2.2	0.948	27.186	1001	40	5	35.75	28.6	5.25	72.655	100
50	5	15.1	1.4	1.468	75.605	778	50	5	23.36	25.6	2.12	70.548	77
50	10	16.39	6.7	3.345	76,937	778	50	10	25.94	1.3	4.849	70.455	77
60	10	13.68	15.3	2.127	85.458	1123	60	10	13.96	2.8	0.63	24.819	112
80	10	11.17	16.9	1.745	154,604	2003	80	10	8.56	2.3		13.044	200
100	10	11.46	17.5	0.696	94.54	3134	100	10	9.36	1.5	0.537	89.202	313
120		11.21	15.5	4.988	49.315	4516	120	10	9.79	8.1	-3.864	51.116	179
120		11.81	112.1	0.562	41.213	1790	150	25	10.16	-5.1 2.6	0.598	50.963 27.794	280
150	25	10.4	97	0.281	37.157	2808	200	25	9.59	6.2	0.211	33.706	500
200	10000	9.72	96.3	0.251	63.822	5007	250	25	10.97	7.8	0.602	213.263	783
250		9.5	97.5	0.154	63.014	7834	300	25	10.12	9.1	0.159	88,448	_
300		10.11	95.3	0.238		11290	340	25	8.27	11.3	0.05	43.783	

Table 4VES 3 & 4 measured field data

Lat:	36.77610	Lo	n:67.3	1688	Ele:33	19 m
AB	2MN/2	Rho (ohm.	A 25.00	300	In	ĸ
		m))	(mV)	(mA)	(m)
1.5	0.5	42.9	11.4	827.514	121.206	13.7
2	0.5	44.52	6.2	310.551	82.184	24.7
3	0.5	42.25	7.9	133.095	86.586	56.2
4	0.5	50.21	6.7	134.936	132.968	100
5	0.5	49.82	5.8	53.606	83.656	157
6	0.5	48.76	5.8	49.488	113.991	226
8	0.5	43.25	5.4	31.483	145.799	402
8	2	47.68	10.3	147.426	145.71	99
10	2	34.9	16.3	51.2	110.624	156
12	2	26.45	16.8	36.017	149.754	225
15	2	22.42	16.3	23.562	182,434	352
20	2	16.26	15.5	7.455	142.615	627
20	5	20.97	45.8	25.296	142.132	247
25	5	18.66	37.2	12.189	123.121	389
30	5	17.97	32.9	8.888	135.946	562
40	5	12.62	30.5	1.611	63.186	1001
50	5	9.41	29.1	0.931	76.898	778
50	10	11.59	85.7	2.07	67.315	778
60	10	9.49	61.7	1.719	99.554	1123
80	10	7.76	46.4	0.802	102.243	2003
100	10	8.22	38.2	1.01	196.25	3134
120	10	8.96	53.5	35.992	100.31	4516
120	25	6.7	35	0.756	97.7	1790
150	25	7.47	11.4	0.773	142.28	2808
200	25	8.37	6.1	0.467	138.077	5007
250	25	7.71	2.6	0.064	32.504	7834
300	25	7.86	1.8	0.082	58.822	1129

	4 Camp S					
Lat:3	6.78168	Rho	67.317.		le:337 m	K
AB/2	MN/2	(ohm.m)	Sp (mV)	(mV)	(mA)	(m)
1.5	0.5	130.34	9.1	1785.072	86.048	13.7
2	0.5	129.13	9.2	308.832	28.175	24.7
3	0.5	117.69	28.7	93.44	21.824	56.2
4	0.5	97.05	19.1	175.171	89.307	100
5	0.5	87.17	19.5	116.831	104.21	157
6	0.5	80.86	18	71.217	98.918	226
8	0.5	73.28	17.2	30.968	84.64	402
8	2	76.53	47.9	137.407	84.606	99
10	2	63.94	30.8	76.667	90.41	156
12	2	56.38	24.3	37.163	72.483	225
15	2	43.61	15.8	20.132	80.136	352
20	2	26.47	12.6	8.215	96.524	627
20	5	27.14	16	22.273	96.672	247
25	5	17.4	6.2	9.002	97.515	389
30	5	11.59	0.9	4.175	99.029	562
40	5	6.7	4.6	1.69	124.802	1001
50	5	5.49	1.3	6.886	175.588	778
50	10	5.98	50.5	2.786	175.559	778
60	10	6.04	22.1	0.406	36.95	1123
80	10	6.53	13.3	1.094	165.927	2003
100	10	7.22	10.8	0.646	139.253	3134
120	10	2.34	4.3	0.179	171.861	4516
120	25	8.3	54.4	1.662	173.348	1790
150	25	9.75	38.7	1.127	158.891	2808
200	25	11.97	36.6	0.224	46.25	5007
250	25	13	39.2	0.5	149.391	7834
300	25	10.31	103.1	0.299	162.917	11290

Table 5VED 5 & 6 measured field data

Lat:3	6.7819	96	Lon:67.31	611	Ele:3221	m
AB/2	MN/2	Rho (ohm.m)	Sp (mV)	Vp (mV)	In (mA)	(m)
1.5	0.5	106.98	12	1280.643	75.212	13.7
2	0.5	92.85	27.4	577.172	73.234	24.7
3	0.5	157.55	28	376.648	65.715	56.2
4	0.5	71.75	25.7	97.028	37.176	100
5	0.5	51.24	28.8	67.665	65.343	157
6	0.5	40.79	31	27.68	52.764	226
8	0.5	36.76	32.3	26.105	79.765	402
8	2	29.62	31.9	7.427	50.221	99
10	2	33.19	37	35.845	50.888	156
12	2	25.98	25.8	17.496	50.785	225
15	2	23.73	23.4	38.581	178.8	352
20	2	21.36	21.8	7.405	60.177	627
20	5	17.31	21.4	7.355	132.156	247
25	5	17.8	85	19.924	131.901	389
30	5	12.56	52.6	10.549	158.267	562
40	5	8.28	44.4	3.552	118.001	1001
50	5	5.82	38.2	1.103	93.761	778
50	10	5.54	24.9	2.238	45.147	778
60	10	5.67	51	0.68	45.243	1123
80	10	4.67	37	0.367	43.175	2003
100	10	7.06	31.2	0.449	98.958	3134
120	10	7.3	30.2	0.233	71.575	4516
120	25	7	162.4	0.236	29.103	1790
150	25	8.2	131.2	0.974	163.189	2808
200	25	9	102.3	0.449	123.483	5007
250	25	8.98	65	0.247	106.985	7834
300	25	10.81	49.5	0.317	164.689	1129

VES-	6, Car	mp Sakhi				
Lat:3	6.779	29	Lon:67	.31992	Ele:34	10 m
AB/2	MN/2	Rho (ohm.m)	Sp (mV)	Vp (mV)	In (mA)	K (m)
1.5	0.5	156.93	3.4	970.951	38.876	13.7
2	0.5	141.01	10.8	429.481	35.881	24.7
3	0.5	132.54	10.8	413.904	85.845	56.2
4	0.5	123.14	18.4	303.798	122.067	100
5	0.5	130.39	20.9	155.813	92.914	157
6	0.5	123.36	19.9	97.723	88.972	226
8	0.5	107.68	20.6	17.453	32.461	402
8	2	102.74	4.6	5.178	31.516	99
10	2	83.09	13.9	22.932	20.81	156
12	2	82.12	3.7	108.888	145.797	225
15	2	79.05	3.5	41.839	91.873	352
20	2	60.31	3.3	25.833	133.214	627
20	5	50.99	31.4	57.774	133.478	247
25	5	43.22	23.3	45.85	199.988	389
30	5	39.11	20.3	15.785	110.952	562
40	5	24.17	17.7	9.611	196.797	1001
50	5	14.78	16.1	2.371	124.683	778
50	10	16.59	20.5	5.586	126.97	778
60	10	12.16	32.2	1.948	88.052	1123
80	10	10.09	33.8	0.482	47.259	2003
100	10	8.19	32	0.543	102.954	3134
120	10	8.47	4.1	26.624	184.311	4516
120	25	7.61	96.5	1.619	184.072	1790
150	25	8.4	52.7	0.881	144.223	2808
200	25	8.81	26.1	0.544	152.925	5007
250	25	9.73	13.7	0.265	105.91	7834
300	25	9.25	6	0.15	91.268	1129

Table 6VES 7 & 8 measured field data

	7, Car 6.7824	np Sakhi 10	Lon:67	.32468	Ele	365 m	100000000000000000000000000000000000000	8 Cam 6.7817	p Sakhi 73	Lon:67.	31544	Ele:	337 m
AB/2	MN/2	Rho (ohm.m)	Sp (mV	Vp (mV)	In (mA)	K (m)	AB/2	MN/2	Rho (ohm.m)	Sp (mV)	Vp (mV)	In (mA)	K (m)
1.5	0.5	65.38	25.8	522.506	50.216	13.7	1.5	0.5	107.33	15.2	1638.87	95.936	13.7
2	0.5	57.84	16.4	218.536	44.511	24.7	2	0.5	101.86	28.6	684.028	79.111	24.7
3	0.5	63.65	12.7	55.297	23.882	56.2	3	0.5	97.79	13.2	649.428	78.239	56.2
4	0.5	72.41	14.9	55.296	37.788	100	4	0.5	70.06	21.9	358.349	140.599	100
5	0.5	98.02	22.5	41.954	33.279	157	5	0.5	51.76	13	100.617	96.176	157
6	0.5	84.55	91.1	23.727	31.518	226	6	0.5	34.69	13.3	30.724	99.472	226
8	0.5	82.21	4.8	24.171	58.886	402	8	0.5	22.8	13	4.24	37.247	402
8	2	84.98	44.8	105.623	58.571	99	8	2	18.06	3.1	5.472	22.839	99
10	2	78.54	39.4	35.036	33.633	156	10	2	14.22	0.7	1.583	12.237	156
12	2	65.71	35.3	26.563	44.451	225	12	2	10.84	0.8	2.256	36.108	225
15	2	53.84	33.4	11.753	37.888	352	15	2	8.7	1.3	1.139	40.705	352
20	2	36	31.7	4.87	42.08	627	20	2	8.97	52.3	3.108	40.814	627
20	5	39.97	42.8	14.581	42.976	247	20	5	7.58	27.9	2.986	74.269	247
25	5	26.71	25	4.412	31.128	389	25	5	6.21	21.9	1.01	44.712	389
30	5	16.61	14.8	1.475	24.411	562	30	5	4.8	15.1	0.637	65.736	562
40	5	8.91	9.2	0.688	38.2	1001	40	5	4.92	8.9	18.191	34.421	100
50	5	6.81	6.2	0.58	66.26	778	50	5	4.46	50.2	0.24	20.268	778
50	10	7.39	21.1	1.554	79.293	778	50	10	4.5	15	0.709	86.716	778
60	10	6.89	21.5	0.96	76.594	1123	60	10	5.1	3	0.362	70.139	112
80	10	7.04	15.3	0.688	96.649	2003	80	10	5.91	1.8	0.419	110.205	200
100	10	7.04	13.6	0.265	58.565	3134	100	10	6.1	5.6	0.095	34.941	3134
120	10	8	-	0.584	163.956	4516	120	10	6.98	46.3	6.041	35.573	4516
120	25	7.49	30.4	1.432	165.538	1790	120	25	6.45	49.2	0.134	18.017	1790
150	25	7.55		0.093	16.958	2808	150	25	5.83	53.3	0.066	15.617	2808
200	25	6.94	32.9	0.043	15.319	5007	200	25	7.82	62.8	0.143	45.328	5007
250	25	8.92	31	0.081	35.104	7834	250	25	8.33	73.2	0.131	61.024	7834
300	25	3.33	29.4	0.007	12.091	11290	300	25	10.62	81.1	0.002	0.007	1129

4.4 Interpreted field data

The collected field data were interpreted by IPI2 wins software. The interpreted data were used to calculate apparent resistivity, thickness, depth and boundaries of layers. The interpreted data are shown in Table 7.

Table 7 Interpreted data

N	VES	Vertical Electrical	Sounding	data interpret	ation results	
0	Profiles	App-Resistivity (Ohm.m)	Layer	Thickness (m)	Depth (m)	Expected lithology of layers
		111	1	0.75	0.75	Loess, sand, gravel
	VEO 4	1.4	2	0.05	0.806	Silt clay (evaporative)
	VES-1	701	3	2.23	3.14	Dry sand and gravel
1	LAT: 36.77377 LON: 67.32578	6.64	4	54.5	57.1	Silt clay
	LON. 07.32376	25.2	5	87.1	145	Sand, silt clay
		0.0661	6	?	?	?
		111	1	0.75	0.75	Loess, sand, gravel
	VES-2	1.01	2	0.0411	0.791	Silt clay (evaporative)
2	LAT: 34.37914	724	3	2.25	3.05	Dry sand and gravel
-	LON: 67.32362	6.65	4	56.8	59.9	Silt clay
	LON. 07.32302	30	5	72.6	132	Sand, silt clay
		0.0666	?	?	?	?
		39.6	1	1.74	1.74	Loess, sand, gravel
	VES-3	0.565	2	1.28	3.02	Silt clay (evaporative)
3	LAT: 36.77610	148	3	1.86	4.88	Dry sand and gravel
	LON: 67.31688	4.11	4	7.44	12.3	Silt clay
		1.47	5	5.16	17.5	silt clay

N	VES	Vertical Electrical	Sounding	data interpre	ation results	
0	Profiles	App-Resistivity (Ohm.m)	Layer	Thickness (m)	Depth (m)	Expected lithology of layers
	Ţ	8.25	?	?	?	?
	VES-4	143	1	1.45	1.45	Clay, silt sand
4	LAT: 36.78168	77.1	2	7.26	8.71	Silt sand, clay
4	LON: 67.31715	4.64	3	55.3	64	Clay, silt sand
	LON. 67.31713	20.6	4	?	?	Silt sand, sand
	VES-5	128	1	2.39	2.39	Clay, silt sand
	LAT:36.78196	25.2	2	17.4	19.8	Silt sand, clay
	LON: 67.31611	1.21	3	15.4	35.2	Clay, silt sand
	LON. 07.31011	14.5	4	?	?	Silt sand, sand
		137	1	1.91	1.91	Clay, silt sand
	VES-6	73.2	2	6.36	8.27	Silt sand, clay
6	LAT: 36.77929	10.2	3	28	36.3	Clay, silt sand
	LON: 67.31992	4.14	4	39.1	75.4	Silt sand, sand
		30.6	5	?	?	Silt sand, sand
		104	1	0.785	0.75	Clay, silt sand
		7.71	2	0.177	0.927	Silt sand, clay
	VES-7	344	3	1.95	2.88	Clay, silt sand
7	LAT.36.78240	18	4	10.6	13.5	Silt sand, sand
	LON.67.32468	2.7	5	20.5	34	Silt sand, sandandclay
		31.7	6	35.8	69.8	Sand, silt sand
		0.918	7	?	?	?
		121	1	2.18	2.18	Dry sand, gravel and clay sand
	VES-8	10.2	2	10.6	12.78	Silt clay and clay
7	LAT.36.78173L	1.2	3	4.8	17.6	Clay, silt clay
	ON .67.31544	6.6	4	169	187	Clay, silt clay
		425	5	?	?	?

Table 8VES#1, VES#2, VES#3, VES#4, VES#5, VES#6, VES#7, and VES#8 interpreted data

4.5 Vertical Electrical sounding field data Graphic interpretation

The VES -1, VES-2, VES-3, VES-4, VES-5, VES-6, VES-7 and VES-8 field data (apparent resistivity versus Electrodes distance) were interpreted withIPI2 win software as well as manually. The boundaries, thickness and depth of rocks layers were determined according to the measured and computed apparent resistivity and geo electrical model (Table 7). The rock types were specified according to the computed apparent resistivity based on the geophysical interpretation principles. The Apparent resistivity versus Electrodes distance curves for VES -1, VES-2, VES-3, VES-4, VES-5, VES-6, VES-7and VES-8are shown in the Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13 and figure 14.

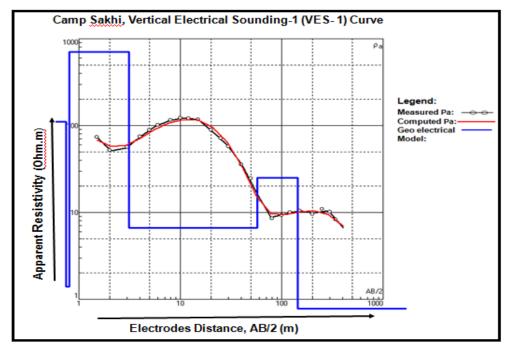


Figure 7VES 1 Curve

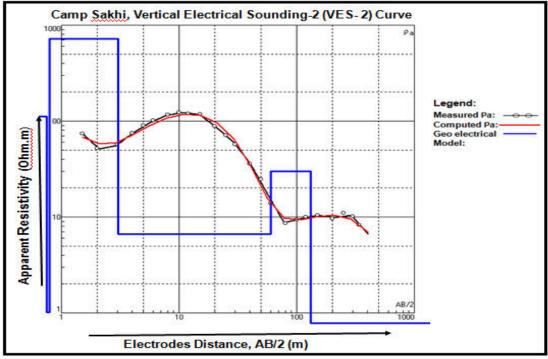


Figure 8VES 2 Curves

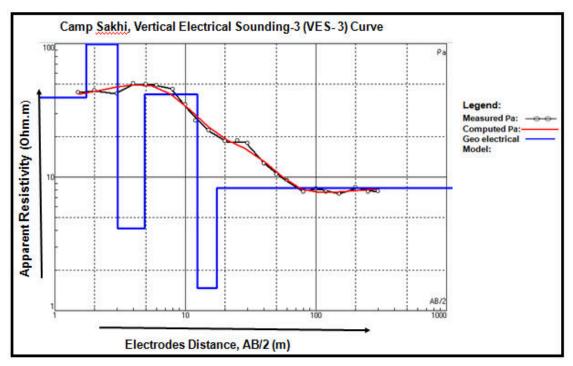


Figure 9VES 3 Curves

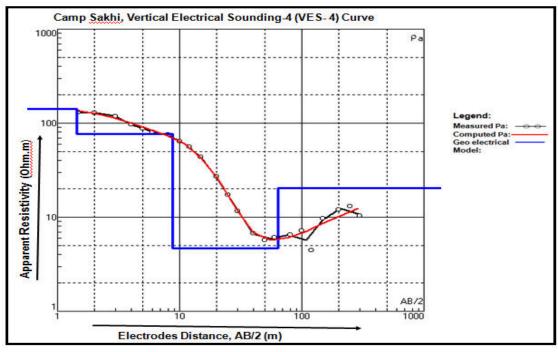


Figure 10VES 4 Curves

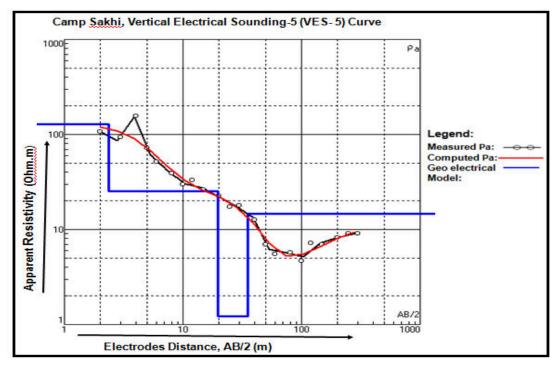


Figure 11VES 5 Curves

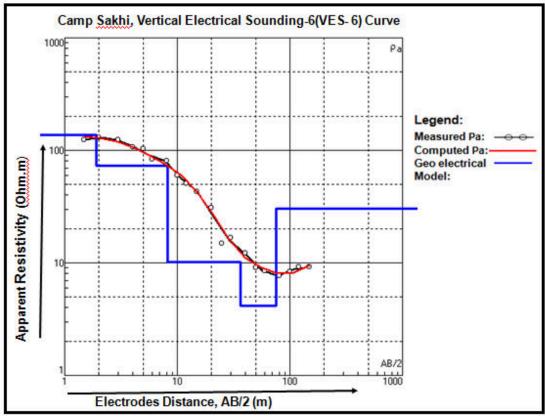


Figure 12VES 6 Curves

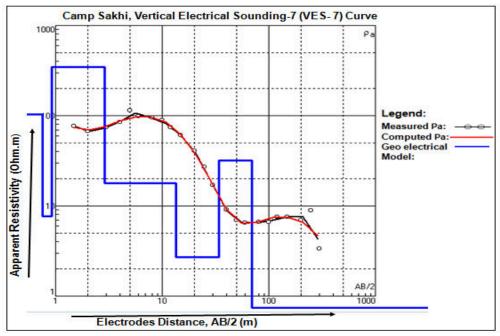


Figure 13VES 7 Curves

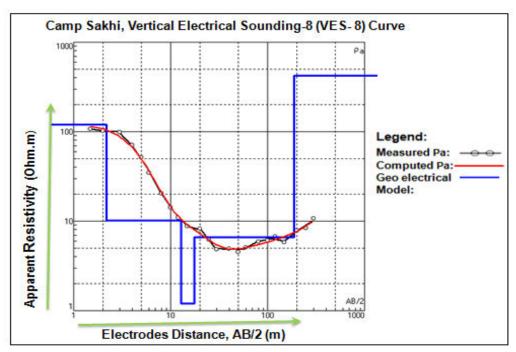


Figure 14VES 8 Curves

4.6 VES profiles field data Graphic interpretation results

The measured, computed apparent resistivity and geo electrical curves show:

• The field data graphic interpretation of profiles VES-1, VES-2, VES-3, VES-7 and VES-8 show that the aquiferconsists of silt, silt clay and has saline water. The groundwater salinity ranges from 3800 μS/cm to 5370 μS/cm. The water table range from 21 m to

- 24m. Therefore groundwater couldn't be developed for drinking purposes due to having high salinity.
- The field data graphic interpretation ofprofiles VES-4, VES-5 and VES-6 shows that the upper part of aquifer layers consists of clay, sand, silt and clay sandand the aquifer consist of sand, silt, somewhat thenlayers of gravel and clay sand. The upper part of aquifer has saline water and the lower part of aquifer has tolerance drinking water (2800 -3100 μS/cm). The water table range from22 m to 25 m. Therefore, these VES profileshave relatively good possibility for development of groundwater than the other VES profiles.

5. Conclusion

- 1. The VES -1, VES-2, VES-3, VES-7 and VES-8 field data (apparent resistivity, computed resistivity and geo electrical model)interpretation results show:
 - The aquifer layers consist of sand, silt and clay sand.
 - The water table ranges from 21 m to 24 m.
 - The groundwater salinity ranges from 3800 μS/cm to 5370 μS/cm.
 - The aquifer has saline water and groundwater couldn't be developed for drinkingpurposes due to having high salinity.
- 2. 2.The VES -4, VES-2 and VES-8 field data (apparent resistivity, computed resistivity and geo electrical model) graphicinterpretation results show:
 - The aquifer layers consist of sand, silt, somewhat then layers of gravel and clay sand.
 - The water table ranges from 22 m to 25 m.
 - The upper part of aquifer has saline water and the lower part of aquifer has relatively fresh water (2800 3100 μ S/cm), this range is not according to WHO limit, but it is according to the upper limit of WSG
 - These VES profiles have relatively a good possibility for groundwater development than the other VES profiles

6.Recommendation

- The Camp Sakhi Town (study area) is one of problematic area due having saline groundwater. The salinity of groundwater is not according to the WHO limit, but the profiles VES-4, VES-5 and VES-6 show relatively good possibilities than the other VES profiles, and the groundwater salinity (2800 - 3100 μS/cm)is tolerancefor drinking according to the upper limit of WSG.
- In the study area (as well as in the surrounding of this camp) is not available other alternative water resources (fresh groundwater and surface water) for provision of safe drinking water. The groundwater is only source of drinking water in this area.
- The discharge of groundwater couldn't determine by this study (Geophysical survey).
 We couldn't find the existing drilled well hydraulic properties which were drilled by deferent organizations in this area, thereforethe discharge of well willbe determined after performingof pumping test.
- The well should be drilled to the depth of 140 m. The salinity of water bearing formation should be monitored during the drilling process.
- If the well drills by Rotary Rig. It is suggested to perform the well logging geophysics for finding suitable intervals of screen installation and blocking of saline water.